

Case Study Webinar Series

Thursday 12 September 2024 | 1:00 – 2:00 PM (AEST)

Acknowledgment Of Country

The Infrastructure Sustainability Council would like to begin by acknowledging the Traditional Custodians of the land on which we meet today. We acknowledge their deep connection to land, water and culture, and pay my respects to their Elders past, present and future.

Agenda		Infrastructure Sustainability Council
	1	Introduction to Ecn-1 – Dr Kerry Griffiths & Declan Collins
	2	East Link WA Project – Sophie Wallis
	3	MelCONNX/MetCONNX Projects – Leigh Penney
	4	Laing O'Rourke Responsible Decision-Making Framework – Sam Donaldson
	5	Question & Answer
3		

Please add any questions to the Q&A function, we will answer these at the end of the presentations

Overview of the ECN-1 Credit

Dr Kerry Griffiths, Infrastructure Sustainability Council

Ecn-1 : Strategic Options Assessment

Intent:

To incorporate sustainability criteria and whole of life considerations into the strategic planning decision making process.

- Range of strategic options identified
- Formal assessment considers material externalities and whole of life costs AND informs the preferred option
- Carbon specifically called out
- Qualitative / quantitative elements

Ecn-1 : Options Assessment & Significant Decision-making

Intent:

To incorporate sustainability criteria and whole of life considerations into decision making processes for significant project initiatives developed in the [planning / design and construction] phases and hence increase sustainability outcomes.

- Clear parameters for significant decisions / initiatives defined
- Formal assessment considers material externalities and whole of life costs
- Carbon specifically called out
- Qualitative / quantitative elements

Current Use, Observations and Insights

Declan Collins, Infrastructure Sustainability Council

ECN-1: Observations & Insights

A systematic approach to sustainable decision-making

- 1. Specialised Requires SQP involvement
- 2. Must be developed and implemented early
- 3. The Golden Goose or Poisoned Chalice
 - Fit-for-Purpose
 - Practical
 - Value-adding

This credit applies to:

- Project optioneering across the infrastructure lifecycle
- Opportunities, Initiatives & Treatments (IS Credits)
 - ALL significant decisions as defined by the Project.

EastLink WA Case Study Sophie Wallis, BG&E

Sustainable Decision Making

Application during the Planning Phase

September 2024

Sophie Wallis, BG&E

Session introduction

Sophie Wallis – Sustainability Lead, BG&E

- Sustainability and systems thinking
- 20+ years in government, resources and infrastructure sectors
- NorthLink WA, EastLink WA, transmission lines, water, resources projects

Today's presentation

Overview:

- Nature of the decisions required for EastLink WA, and the process we developed

Planning phase:

- Opportunities, constraints and risks specific to earlier project phases

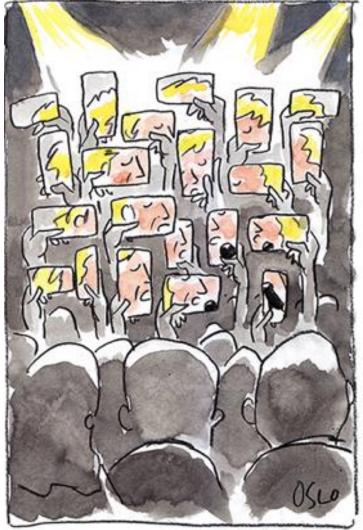
Considerations for the Ecn-1 credit

Key benefits for EastLink WA project

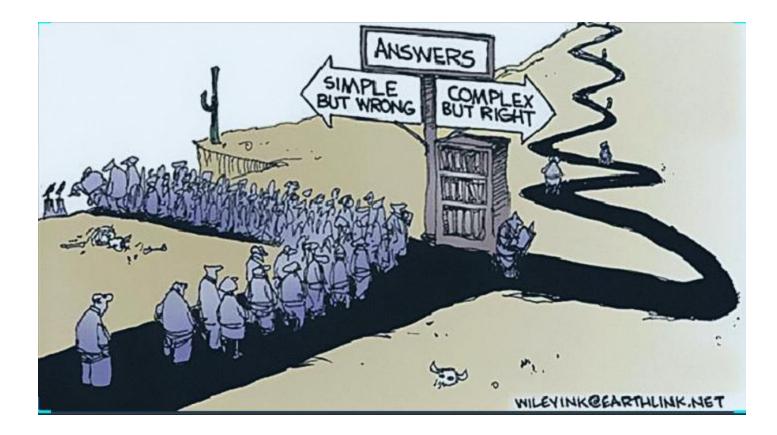
- Value of taking holistic view

Z	?	2

Overview of decisionmaking process for EastLink WA


Why did we need a decision-making framework?

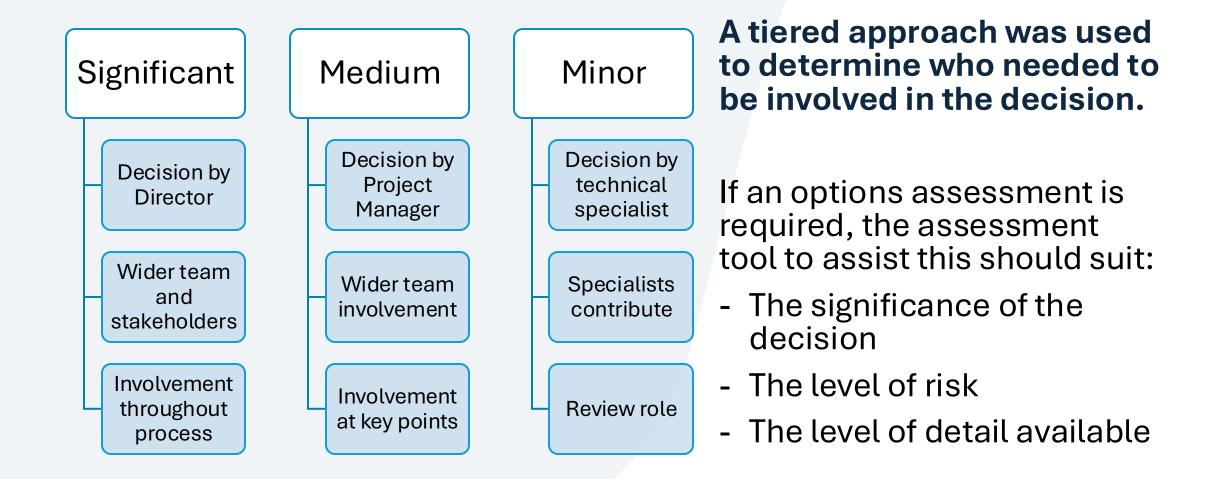
EastLink WA:


- Planning and development many different decision types
- High uncertainty / mixed certainty
- Achieved a Silver rating, including Ecn-1 credit

Drew on models which started with context before moving to MCA/ scored method

For real projects, conditions are not perfect and time is short

It's not all about MCAs


 Multicriteria Assessments can help to make sense of multiple aspects

BUT

- Tools like MCAs should not make decisions, they should inform decisions
- Outputs should be discussed and tested
- They need upfront work to be most useful

Overview of 6	1 Problem identification	 State required decision State project phase Determine 'significance' Involve range of specialists
steps	2 Problem definition	 Define scope, context, constraints Understand available data and limitations Consider risks from incomplete data or information availability
 Can be scaled up or down Is not 'perfect' but is 	3 Options identification	 Identify range of options with sound environmental, social, economic and technical outcomes Identify preferred option(s)
practical – use as a starting point to do better when possible	4 Options assessment	 Assess options with appropriate tools Seek input from range of specialists Identify preferred option(s)
 Is based on strategic guidelines e.g. from ATAP and IA but adapted for project-level decisions (rather than 	5 Test preferred option(s)	 Refine option with feedback from decision makers Document risks from uncertainties
funding decisions)	6 Select option	• Document decision

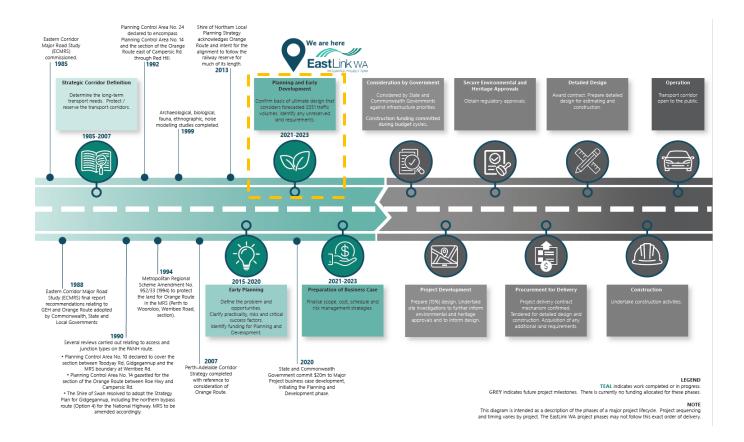
Significance of decision

Opportunities, constraints and risks specific to planning phase

Planning and development phase

Activities to prepare project for delivery

Funding/ business case


Establish partnerships, stakeholder engagement, field surveys

Options assessment

Develop scope and requirements for delivery phase

Considering environment and social outcomes in:

- Alignment of highway
- Access strategy
- Design of interchanges
- Highway over vs under

Streamlining decision making

Upfront review of decision types informed the process best suited to the project

- Some engineering and traffic decisions were relatively simple less input needed from multi-disciplinary team. Adopted a streamlined process.
- Connection and network decisions involved a systematic engineering process some input from multidisciplinary team on constraints in the broader area.
- Alignment decisions were more complex, and interdependent. Multidisciplinary team helped to develop shared understanding of pros and cons.
- Opportunities explored with wider team and external stakeholders

Problem identification

Time can be wasted if we start to answer the wrong question, e.g.

- Design to optimise safety, business access, environmental outcomes
- Review the design for new issues
- Develop alternative design
- Connection/ no connection...

Articulate question being asked and define scope of decision.

Another danger is starting to answer the next perceived question before finding an answer to the current one.

In planning the end point can be a little unclear!

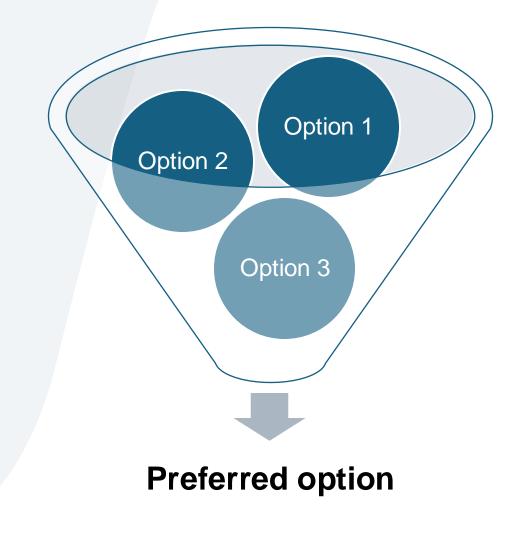
"...I think the problem, to be quite honest with you, is that you've never actually known what the question is."

Douglas Adams, The Hitchhiker's Guide to the Galaxy

Example – Bakers Hill Alignment

Problem definition/ context

- Seek input from range of specialists about what is important to them
- Identify potential risks arising from incomplete data or information availability.
- Consider objectives and criteria


Options identification

We don't just want to assess some options, we want to assess some **good** options

This step is about developing that short list of good options.

Sometimes we can eliminate bad options and explain why they should not be taken forward.

- Identify an appropriate range of options that meet the scope
- Seek input from range of specialists to identify options with sound environmental, social, economic and technical outcomes
- Agree criteria

Considerations for application of the Ecn-1 credit

Options assessment

- Assess options using appropriate methods and tools
- Seek input from range of specialists on:
 - Weightings
 - Criteria
 - Assessment and scoring
- Identify preferred option(s)

After options assessment, test outcomes with decision makers, and to confirm the decision.

Document outcomes in line with Ecn-1

Г	
L	<u> </u>
L	
L	

Value of taking holistic approach

Ecn-1 credit aims to incorporate sustainability criteria and whole of life considerations into decision making processes for significant project decisions.

In other words:

- Understand what is important in the project's wider context
- Make decisions with long term benefits

To do this we needed

- 1. Clarity on what problem we were trying to solve
- 2. Good options (not just lots of options)
- 3. To look beyond the project boundaries zoom out
- 4. To look beyond just an engineering solution to get the best long term outcomes from a broad range of perspectives
- 5. Templates that capture information to meet credit requirements adopted as routine by the team.

Key benefits for EastLink WA project

Benefits

- Collaboration
- Future phases have sufficient information
- Major decisions could be made early, even without perfect information
- Streamlined approach to 'routine' interchange decisions. Team could allocate time to more important decisions.
- Bakers Hill sense-making for a complex section of highway.
- Susannah Brook land-use planning constraints and environmental impacts to Susannah Brook. Retained ~1.4km of the existing tributary, avoiding waterway diversion.
- Altone Road interchange considered local amenity alongside technical criteria. Solution more suited to local residential area.

MelCONNX/MetCONNX Case Studies Leigh Penney, Laing O'Rourke

Ecn-1 Project IS D&AB Case Studies LEIGH PENNEY – SENIOR SUSTAINABILITY MANAGER

12 SEP 2024

ACKNOWLEDGEMENT OF COUNTRY

I would like to begin by acknowledging Aboriginal and Torres Strait Islander Peoples as the Traditional Custodians and First Nations Peoples of Australia. We pay our respects to their ancestors and Elders both past and present and support those emerging. We thank them for enriching our nation with their cultural practices.

PROJECT OVERVIEWS

Byford Rail Extension

- 8km rail line extension south
- 2 new stations
- 1.6km elevated viaduct to remove level crossings
- Upgrade of local roads
- 6 Ha of new public open spaces created

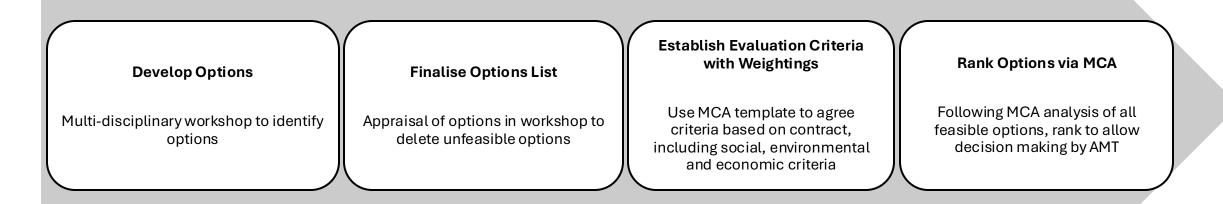
Morley-Ellenbrook Line

- 21km new double-track rail line
- 5 new stations
- Road-over-rail bridges, two elevated viaducts, Bridge and rail tunnel portals into busy Tonkin Hwy
- >36,000sqm of landscaping footprint, in Station precincts

Agenda

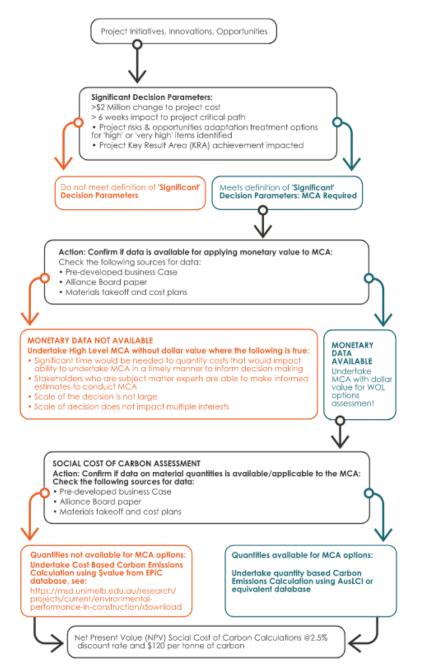
- Overview of Process
- Dealing with different types of decisions
- Social Cost of Carbon (Level 2 Ecn-1, v2.1)
- Examples of initiatives & outcomes realized
- Lessons Learned Opportunities/Constraints/Risks

Significant Decisions Process


MCA tool is required where one of the following is true:

- >\$2,000,000 change to project cost
- >6 weeks impact to project timeline
- Options assessments for:
 - Lea-2 (Risks & Opportunities adaptation treatment options for <u>high/extreme risks</u> identified),
 - ✓ **Res-2** (climate change adaptation treatment options for <u>high/extreme risks</u> identified)
 - Ene-1/2 (energy reduction/ renewables options for <u>high/extreme opportunities</u> identified),
 - ✓ Wat-1/2 (water reduction/substitution options for high/extreme opportunities identified),
 - **Rso-1/4** (materials/waste recycling or reuse options <u>for high/extreme opportunities</u> identified)
 - **Rso-2** (remediation adaptation treatment options for <u>high/extreme opportunities</u> identified)
- Significant positive/negative impact on Environmental/Social
 Outcomes (including Indigenous People of the Land)
- Significant stakeholder risk or opportunity (as identified in Sta-1)
- No clear consensus by internal stakeholders

Multi criteria analysis – key decisions



Example Decision: Power Supply to Site Offices

- Option 1: Diesel fuelled generators
- Option 2: Bio-diesel fuelled generators
- Option 3: Grid electricity connection
- Option 4: Grid connected GreenPower electricity

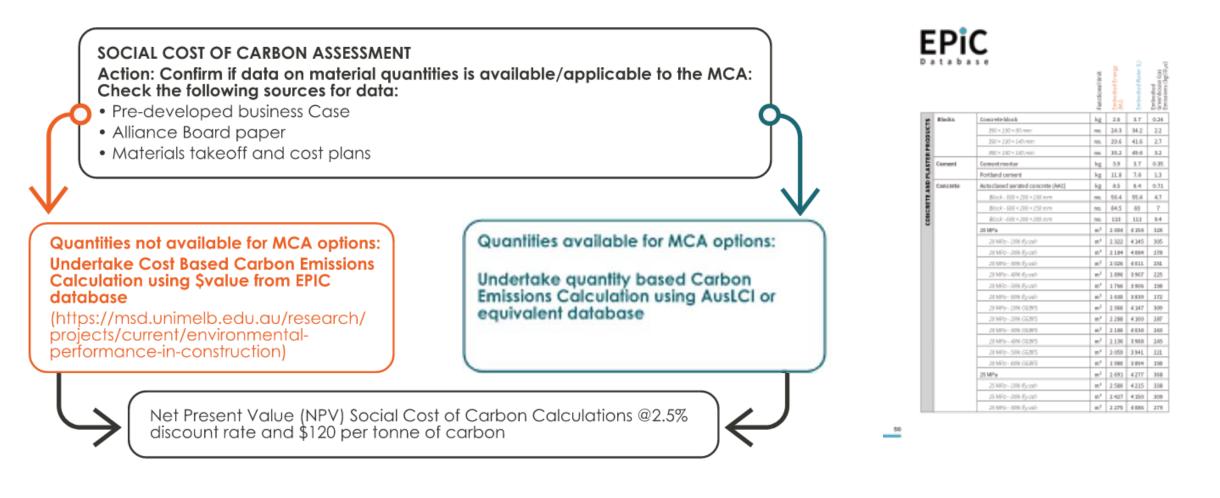
Process Flow

for Multi Criteria Analysis (MCAs), Monitised MCAs and Social Cost of Carbon (SCC)

Dealing with different types of decisions

The cost of carbon has been assessed quantitatively in the options assessment: Ecn-1, Level 2

What \$ value to use?


- ACT first jurisdiction to put \$ value on carbon (A\$20/tCO2e-)
 - ✓ **USA:** Recommended US\$51/tCO2 (2020) & US\$85/tCO2 (2050) discount rate of 3%. US EPA proposed \$190tCO2.
 - Canada: Recommended \$38/tCO2 (2020) and \$45/tCO2 (2030) at 3% discount Rate.
 - ✓ **UK:** set a value for the SCC in 2007 of US\$50/tCO2, increasing at 2% per year, in 2009 moved away from SCC
 - Germany: The German Environment Agency continues to use an SCC for project/policy decisions. SCC estimate \$218/tCO2 (2020) and \$248/tCO2 (2030) discount rate of 3%.
- NSW Government Guide to Cost-Benefit Analysis: TPG23-08 value of SCC (A\$123/tCO2 FY23) & (A\$128 tCO2 FY2025)

BRE project: A\$120/tCO2 - discount rate of 2.5% for lifecycle of the initiative/decision.

The cost of carbon has been assessed quantitatively in the options assessment: Ecn-1, Level 2

What happens when you don't have carbon values?

Significant Decisions Process

MCA tool values externalities as well as BaU criteria:

Financial aspects:

- ✓ CAPEX
- ✓ OPEX

Technical aspects:

- ✓ Constructability
- ✓ Resources
- ✓ Safety in Design
- ✓ Construction Safety
- ✓ Operational Life
- ✓ Maintainability
- ✓ Adaptability

Economic aspects:

- ✓ Local industry participation
- ✓ Local supply chain impact
- ✓ Aboriginal supply chain impact
- Reputational impact

Social aspects:

- ✓ Local business impacts
- Local industry participation opportunities
- Aboriginal employment opportunities
- ✓ Community impacts
- ✓ User impacts
- ✓ Heritage impacts

Environmental aspects:

- ✓ Energy & Carbon
- Material quantity reductions
- Waste quantity reductions
- ✓ Climate Change resilience
- ✓ Water use reduction
- Pollution (air, land, water, noise, vibration)

Categories	Category Weightings	
Cost	50%	
Economic	10%	
Environmental	10%	
Social	10%	Star "
Technical	20%	and the last
		Device from the De
tion)		view jrom Piwijorm

Significant Decisions - MCA Template

-									-					
Options Assessed	Brief Description	Assess via MCA below (Y/N) Justify if No												
Option 1:														
Option 2:						Date of MCA Apalyots	MCA Crite	eria As	sessm	ent Information				
Option 3:						Contributors								
Option 4:						Author	Assessm	ient ratin	ng 👘	Desc	ription			Score
						-								
										Major negative impact/ou	itcome			
Category	Criteria	Option 1 - Base Case	Unweighted	Category	Veighted	Option 2	Strongly	/ negativ	e.	Long term effects				-3
		(cunridoratium, explanatium and iurtificatium)	criteria score	Veighting	score	(cunridoratiunr, explanatiun and iurtificatiun)				-				·
	CAPEX			-						Possibly irreversible effe	cts			
Cost	OPEX			-						Moderate negative impac	t/outcome			
(CAPEX, OPEX,	End of life decommissioning			50%	0		Moderate	ly negati	ive		-			-2
Externalities)	Organisational benefits			-						Impacts may be managea	ble			
	Social Cost of Carbon									Minimal negative impact,	loutcomo			
				1	1									
	Local industry participation			-			Slightly	negative	e ·	Short term impact/outcom	ne			-1 -1
	Diverse workforce participation					I	υ,	-		Impacts can be managed	or mitigate	d		
Economic	Local supply chain impact			10%	0	_				impacts can be managed	or mitigate	u		
-	Aboriginal supply chain impact			-			Ne	utral		No discernible impact/ou	itcome			-
	Reputational impact									no albeenible impact of	ceonic			0
	Energy and Carbon									Minor positive impact/ou	tcome			
	Energy and Carbon Materials quantities/reduction			-						winter positive impact/ou	come			
	Waste quantities/reduction			-										" - -
Environmenal	Resilience to Climate Change			10%	0	_	Slightly	/ positive	e	Possible only short term				1 –
-	Water use/reduction			-										
-	Pollution (air, land, water, noise,			-		 				Confined to a limited are	а			-
	vibration)													
	Leasthuring and increases		[1						Moderate positive impact	t/outcome			
	Local business impacts			-		_	Moderate	ely positi						2
Constal	Community impacts		U	10%	0	 				May provide new opportu	nities or in	nprovemer	nts	
Social	User impacts			10%	0									
-	Heritage impacts Climate change and resilience			-						Major positive impacts/o	utcomes			-
-	adaptation						Strongly	y positive	e					3 -
	Constructability		[Long-term improvements				
	Safety in Design			-										
Technical	Operational Life			20%	0			20%	0			20%	0	
recinical	Maintainability			2070	ľ			2070	Ĭ			20%	Ŭ	
-	Adaptability			-										
		TOTAL SCORE	0		0		0		0		0		0	
				100%				100%				100%		

MCA Example - Steel Selection

						Multi Criteri	ia Analysis						
Category	Criteria	Option 1	Unweighted	Category	Weighted	Option 2	Unweighted	Category	Weighted	Option 3	Unweighted	Category	Weighted
		Steel supplied by Bestbar	criteria score	Weighting	score	Steel supplied by Infrabuild	criteria score	Weighting	score	Steel supplied by Plascorp	criteria score	Weighting	score
Cost	CAPEX (Quote for total C054 package) budget to build =		-3				-2				-3		
(CAPEX, OPEX, Externalities)	Operational Expenditure	N/A	0	50%	0	N/A	0	50%	-2.5	N/A	0	50%	-1
Externatives)	Social Cost of Carbon (\$120/T)		3				-3				1		
								1					
		Bestbar is an Australian company, however steel is sourced from mill in Singapore (Natsteel).	1			Infrabuild is an Australian company and owns steel mills within Australia	2			Plascorp sources steel from many international mills	1		
		N/A	0	5.04	0.45	N/A	0	500		N/A	0	59/	0.05
Economic		N/A	0	5%	0.15	N/A	0	5%	0.1	N/A	0	5%	0.05
		N/A	0			N/A	0			N/A	0		
	Reputational impact	Positive, best bar are recognised industry leaders for low carbon steel.	2			N/A	0			N/A	0		
		Impacts accounted for in row below.	0			Impacts accounted for in row below.	0			Impacts accounted for in row below.	0		
	Material Impacts (embodied carbon) TCO2e-	2103	3			6590	-3			2258 – if steel is procured from Celsa mill in Spain. This is unconfirmed.	1		
Environment	Sustainability Certifications	EPDs for products available	2	20%	1	EPDs for products available	2	20%	-0.2	EPDs for product, dependent on source mill.	1	20%	0.4
	Resilience to Climate Change	N/A	0	20/2	-	N/A	0	2077	0.2	N/A	0	2070	
	Water use/reduction	N/A	0			N/A	0			N/A	0		
	Pollution (air, land, water, noise,	N/A	0			N/A	0	1		N/A	0		
	vibration)							1					
	Local business impacts	No differentiation	0			No differentiation	0			No differentiation	0		
Social	Community impacts	No differentiation	0	5%	0	No differentiation	0	5%	0	No differentiation	0	5%	0
	User impacts	No differentiation	0			No differentiation	0	1		No differentiation	0		
								,	I				
	Capacity to supply required volume of material		0				0				0		
Technical	Experience with similar scale jobs		0	20%	0		0	20%	0		0	20%	0
	Performance with similar scale jobs		0				0				0		
		TOTAL SCORE	8		1.15		-4		-2.6		1		-0.55
			0		1.15				-2.0				-0.55

MCA Example – Byford Compound Rooftop Solar

Estimated Socia

Cost of Carbon

Savings @\$120/T

23.991.55

17.993.66

35,987,33 374.87 \$ 44.984.16 Addition

44.984.16

Carbon

(t/CO2)

0.00 199.93 \$

149.95 \$

299.89 \$

374.87 \$

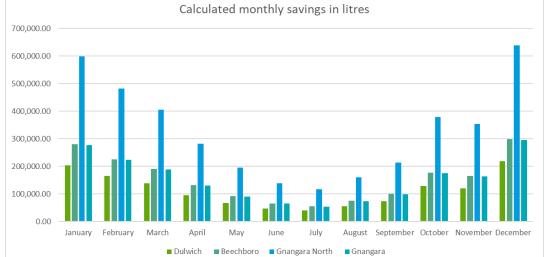
Package	Temporary Works											
Decision Reference	MCA015											
Drawing/ sketch	SELECT Compund Drawings											
		diesel generator until the switch can be made (with This switch can take anywhere between 6-12 months. This	Options Item	Estimated Estima Weekly Hire Weekly	Fuel Weekly	Estimated Weekly	Total Weekly Generator Run	no	Vol. cost while It connected to		Social Cost of	Estimated Social C Cost of Carbon (3
Decision Description	MCA is for the purpose of determining the most	t sustainable option for powering these sites, in		Cost (AUD) Consum n (L)	nptio Carbon (kg))	Operating Expense (AUD)	time(h)	m	ains (3 months)		Carbon @\$120/T (S)	Months)@\$120/T (1 (\$)
	consideration of the switch.		60kVA generator BAU 100% diesel 60kVA hybrid generator (@40% Savings against BAU)		1800 4806 1080 2883.6			\$ -40% \$		3,420.00	576.72 346.03	
	This is specifically for the Byford Site Compound		60kVA hybrid generator (@ 30% Savings against BAU) 60kVa hybrid generator with ground mounted solar array	\$1,699.00 \$1,944.00	1260 3364.2 720 1922.4	\$2,772		-30% \$ -60% \$	53,652.00 \$		403.70	\$ 4,844.45
			60kVa hybrid generator with 2 x ground mounted solar array 60kVa hybrid generator with roof mounted solar (50kW)		450 1201.5 450 1201.5			-75% \$ -75% \$		1	144.18 144.18	
Options Assessed	Brief Description	Assess via MCA below (Y/N)		Estimated			Green Power offset Cost		Savings against			
options Assessed	bhei bescription	Justify if No	LONG TERM OPTION BAU Grid connection only)			Cost per year \$ 51,530.00		WoL costs per year	BAU			
Option 1:	Diesel Generator, switch to mains in nine	Y	SolPod option (38.5kW solar + grid connection) SolPod option (38.5kW solar + grid connection) NEW S	\$ 242.31 ⁴ \$ 49,13 \$ 282.77 \$ 49,13	0.00 tba 0.00 tba	\$ 61,730.00 \$ 66,886.50	0	*******	-8.2			
	months.		SolPod option (S6KW solar + grid connection) SolPod option (S6KW solar + grid connection)	\$ 415.38 \$47,43 \$ 623.08 \$45,43		\$ 69,030.00 \$ 77,830.00		******	**			
Option 2:	Ground solar and hybrid battery, switch to	Y							oL-cost-while-			
	mains in nine months								t connected to ins (6 months)	Savings		
Option 3:	roof-mounted solar and hybrid battery, switch	У	60kVA generator + fuel cell 60kVA hybrid generator (@40 11 Savings against BAU)					· s-	113,360.00 5 116,246.00 5	(2,886.00)		
	to mains in nine months		60kVA hybrid generator (@30% Savings against BAU)					ş-		(2,886.00)		
Option 4:	Solpod offering 38.5kW (long term rental	Y	New LORA PS									
	model for roof-mounted solar and hybrid		 All off-grid site facilities must utilise a generator with 40% reduction in diesel consumption. 	a battery energy storage	system to achieve	e a						
	battery) would commence with connection to											
	the grid.		l									
Date of MCA Analysis	December 2023											
	Bryan Keeler (Senior Project Engineer), Michae	I Crocetta (Construction Manager), Damien McKay										
Contributors	(Commercial Manager), Ashley Wallace (Enviror Manager)	nmental Manager), Tania Anglin (Comms/Stakeholder										
Author	Leigh Penney (Senior Sustainability Manager)											

										Analysis					
Category	Criteria	Option 1 - Base Case Diesel Generator, switch to mains in nine months.	hted criteria	Categor y Weightin a	∀eighte d score	Option 2 Ground solar and hybrid battery, switch to mains in nine months	Unveighte d criteria score	Uategor y ∀eighti	₩eight ed score	Option 3 roof-mounted solar and hybrid battery, s v itch to mains in nine months	Unweighte d criteria score	Uategor y ∀eightin	₩eighte d score	Option 4 Solpod offering 38.5k¥ (long term rental model for roof-mounted solar and hybrid	Unu ed c sc

MCA Example – Electric Vehicle Chargers

		Multi Criteria Anc	ılysis	
MCA SUMMARIES Package Decision Reference Drawing/ sketch reference Decision Description	Feasibility Study for installation of Electric Vehicle Charging MCA-023 Report Feasibility Study To install 7kW chargers and infrast MEL stations at 5 EV chargers (10 o	ructure Day one at all A per stations		
Options Assessed	Brief Description	Assess via MCA belov (Y/N) Justify if No	Total ¥eighted score -13	
Option 2: Option 3:	5 No. dual port 7k¥ AC EV charging stations per MEL Station Max No of 7k¥ EV charging stations to suit limitations of current electrical design	Y	3.6 1.3	Is there a shorter conduit run DetaRGERS CHARGERS MALAGA PRECINC
Option 4:	Max No of 22k₩ EV charging stations to suit limitations of current electrical design infrastructure per MEL Station	N - No MCA undertaken as 22kW chargers were not seen as suitable for the function of the stations	nła	
Option 4:	total number of car bays (inclusive of modiification to electrical	N - program did not allow for additional	n/a	No was and a long of the second of the secon

MORLEY - ELLENBROOK LINE


ICA SUMMARIE					
'ackage	Site Energy Options - Compound			T	
ecision eference	Hgroup.local\dfsdata\AU\Cor 7\\\450 Sustainability\\\452 Pro Docs_Interconnected credits\ STRATEGY\Opportunities\\VI	ject Supporting NET ZERO			BLACK STUM
rawing/ ketch eference	See options			1	
ecision escription	Site compound power Whiteman Park as car orid				
Options Assessed	Brief Description	Assess via MCA below (Y/N) Justif¶ if No	VoL Cost	Total weighted score	
ption 1:	SELECT - BAU Diesel Generator (2200L)	Y	\$415,850	-3.5	
lption 2:	SELECT - BDM 45kVA hybrid battery and UPS with 100kVA Prime Power Diesel Generator	Y	\$449,914	-1.3	1 MVp Installed in one week Available for immediate delivery
lption 3:	SELECT - BDM (Akao) 75kW Solar Array with 110kWA Generator Microgrid (with 60kW Battery)	Ŷ	\$480,933	6.9	TS kWp provide Set of the set of
)ption 4:	SELECT - BDM (Akuo) 75kW Solar Array with 110kVA Generator Microgrid (without Battery)	Y	\$368,181	5.8	
lption 5:	Black Stemp 6kWp solar Microgrid array with SOLWA LiFePo4 battery bank with SOLWa (Bio)Diesel generator	Y	\$437,401	5.9	Scalable Biologic parts and any Social Stream Comparison of the Stream Comparison of the Stream
lption 6:	Hybrid Systems Solar 22.2 kWp solar PV Microgrid with 53.2kWh battery with 22kWA diesel back up genset (max continuous 85A single phase output)	N Requires 3 phase for site compound and system likely too small	\$157,002	nta	No Construction need
lption 7:	Hybrid Systems 40 kWp solar PV Microgrid with 73kWh battery with 44 or 66kVA diesel back up genset (max continuous 404A three phase output)	Y	\$417,243	7.6	MCA Example – Site Energy Options

Lessons Learned

Opportunities / Constraints / Risks

- Embed the process early and get SLT buy-in to develop
- Tag on to existing processes to ensure it happens as required!
- Make it fit the project and decisions needs to be agile!
- Hold teams accountable and ensure widespread use (disciplines)
- Define how you will implement SCC, make this workable/agile for your project
- Helps to get innovations/initiatives up, particularly when comparing with traditional BaU CAPEX only (i.e. renewables)

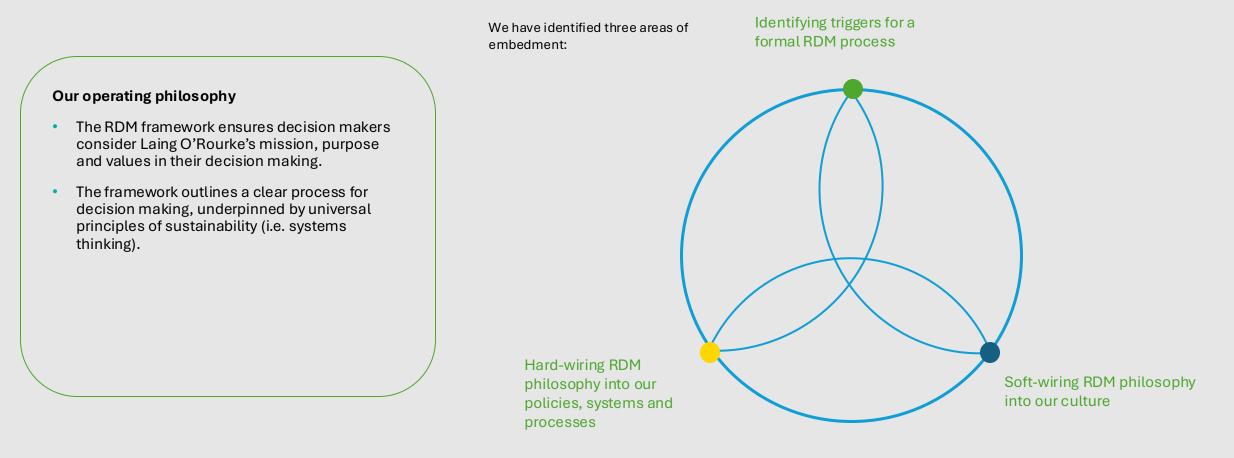
THE POWER OF EXPERIENCE

LAINGOROURKE.COM

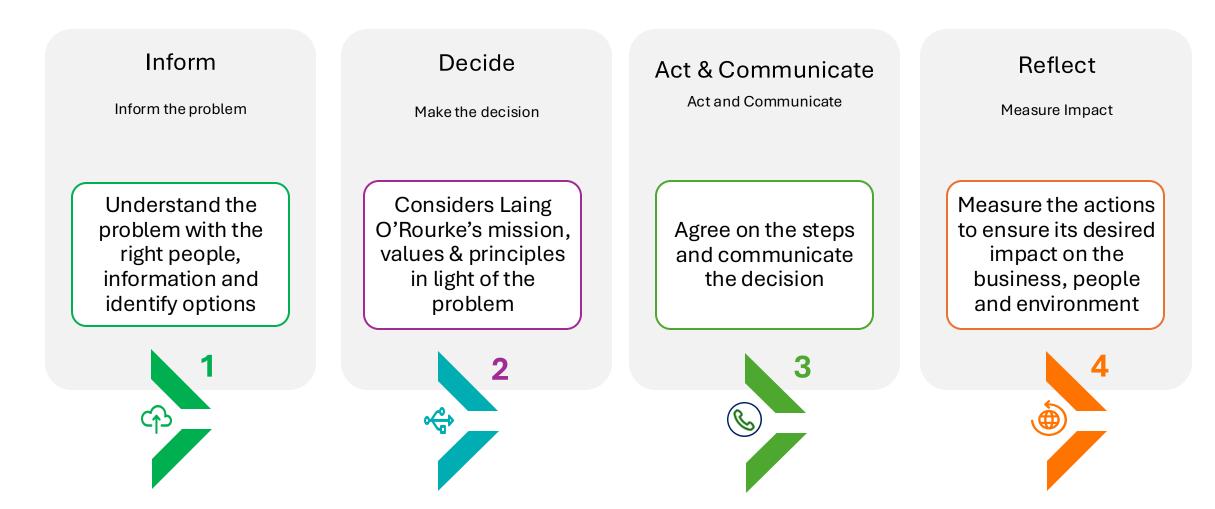
Thank You

All materials contained in this presentation are copyright of Laing O'Rourke.

Laing O'Rourke's Responsible Decision-Making Framework Sam Donaldson, Laing O'Rourke



ISC Webinar RESPONSIBLE DECISION MAKING


Introduction to responsible decision?

Methods to Responsible Decision Making

RDM underpins Laing O'Rourke's operating philosophy

Steps to Responsible Decision Making

Making project decisions with purpose

How corporate MCAs help shape project-based MCAs

Alignment with strategic goals

 Projects align their decisions with the businesses mission, purpose and values • Act as a useful tool to support balanced scorecard requirements in the IS rating

Consistency and efficiency in decision making

• Unifies MCA approaches that lead to more consistent decision making

• A ready-made tool to save projects developing MCAs from scratch

Culture and stakeholder buy-in

- Improved understanding leading to increased buy-in and faster decision making
- Easier for projects to justify decisions and for the business to compare outcomes across all projects

Considerations

• Projects need to be flexible and adjust to suit other stakeholders values and processes

• Need to adjust values and weightings to suit the type of situation or problem being addressed

Question & Answer

